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Advanced Data Structure and Algorithms 
Mini-Problem 

Everything has been programmed in Google Collab with Python, hence we have submitted a .ipynb which 
has a nice display and easy package installation. Here is the link : 

https://colab.research.google.com/drive/10IAB2f-7Tasd2Nr9v_1M3ZQFk0kLFZC9?usp=sharing 
You can make a copy of the notebook to execute it easily or import the .ipynb in Collab. 

Step 1: To organize the tournament 
 

1. Propose a data structure to represent a Player and its Score 
We propose to store player’s data in a dictionary to have access to the element in 𝑂(1). The 

dictionary is composed of : 

• the player’s name : a string  (player_1, player_2, …, player_100) 

• his score : an array containing all his games’ score and the mean of all its games (the 

first value is the average score and the next values are the scores of the player in each 

game so if a player has played 2 games in which he scored 6 points and then 10 points, 

his score will be [8, 6, 10]) 

• whether he is an impostor or not : a Boolean (True stands for Impostor, False stands 

for Crewmate) 

2. Propose a most optimized data structures for the tournament 
(called database in the following questions) 
The most optimized data structure for the database seems to be an AVL tree. Each node is the 

player’s dictionary and the AVL tree is sorted using the player’s average score. AVL tree allows 

us to search, access, insert and delete elements in 𝑂(𝑙𝑜𝑔 𝑛). Moreover,  the data are stored 

sorted. 

The height h (counted as number of edges on the longest path) of an AVL tree with n nodes 

lies in the interval : 

𝑙𝑜𝑔2(𝑛 + 1) − 1 ≤  ℎ <  𝑙𝑜𝑔𝜙(𝑛 + 2) + 𝑏  where  𝑏 ≈  −1.3277 

In our case we have 100 nodes therefore our AVL tree’s height will remain between 6 and 8. 

The tree is too big to be correctly displayed, but here is for example a small part of the left 

subtree : 

 
 

https://colab.research.google.com/drive/10IAB2f-7Tasd2Nr9v_1M3ZQFk0kLFZC9?usp=sharing
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Using an AVL Tree comes with certain obligations. Each time we will insert or delete a player 

in the tournament, we will have to make sure that our tree is still balanced. if the difference 

in height between its left sub-tree and right sub-tree is not between -1 and +1, we will have 

to balance the tree again by making rotation. If the tree is unbalanced because of a player that 

has a better score than a second player that himself have a better score than a third player, 

we have to perform a single left rotation : 

 
 

If the tree is unbalanced because of a player that has a worst score than a second player that 

himself have a worst score than a third player, we have to perform a single right rotation : 

 
 

If the tree is unbalanced because of a player that has a better score than a second player that 

himself have a worst score than a third player, we have to perform a left right rotation : 

 
 

And last but not least, if the tree is unbalanced because of a player that has a worst score than 

a second player that himself have a better score than a third player, we have to perform a 

right left rotation : 
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3. Present and argue about a method that randomize player score at 
each game (between 0 point to 12 points) 
For all player we append a new random number between 0 and 12 to the score list and then 

we update the mean of all games which is the first element of the list. It is done easily with 

the library random available in Python. 

4. Present and argue about a method to update Players score and the 
database 
Using Tree Traversal algorithm  elements can be retrieved in-order by recursively traversing 

the left subtree of the root node  accessing the node itself  then recursively traversing the 

right subtree of the node  continuing this pattern with each node in the tree as it is recursively 

accessed. Traversal is performed in 𝑂(𝑛). 

Hence our method consists in creating another AVL tree and applying the traversal algorithm 

to our database. For each node we copy the node and append to the player’s array a 

randomize int between 0 to 12 and we compute and store the mean of all his games in the 

first element of this array (initially set to 0). Then we insert this node to the new AVL tree. We 

chose to create a new AVL tree to avoid passing twice on the same node. The whole process 

is then done in 𝑂(𝑛 ∗ 𝑙𝑜𝑔 𝑛). 

5. Present and argue about a method to create random games based 
on the database 
We propose to create 10 empty AVL trees numbered from 1 to 10. Then we use Tree Traversal 

algorithm. For each node we pick a random int in a dictionary whose keys are the numbers 

corresponding to each AVL tree and the value is the number of player already added to the 

tree  we increment the value corresponding the AVL tree in the dictionary. When an element 

reaches 10 we remove it from the dictionary it means the tree is full (10 players max in a 

game). Once trees are completely filled we pick 2 distinct numbers in {1  …   10} and we 

attribute to the corresponding player the role of impostor by using search algorithm in 

𝑂(𝑙𝑜𝑔 𝑛). Hence the whole process is also done in O(n*log n). 

Here is an example of three games among ten, and we can see that the repartition of players 

is heterogeneous (players inside one game have very different scores) : 
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6. Present and argue about a method to create games based on ranking 
We create an empty AVL tree and a global counting variable. Then once again with Tree 

Traversal algorithm we add each node to the new tree and add 1 to the count variable. Once 

it reaches 10 we create another tree and do the same until with finish the traversal. 

Here is an example of three games among ten, and we can see that the repartition of players 

is now homogenous (players inside one game have more or less the same score) :  

 

7. Present and argue about a method to drop the players and to play 
game until the last 10 players 
At the end of each game  we update all scores. Then we delete 10 times the leftmost element 

using the simple deletion algorithm of AVL trees. Once it is done we add 10 to a global counting 

variable and when it reaches 90 we stop the process. 

Here is an example of a final possible tree : 

 

(please note that the fact that player_100 is the one with the best average score is a pure 

coincidence !) 
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8. Present and argue about a method which display the TOP10 players 
and the podium after the final game. 
Using Tree Traversal algorithm on the remaining AVL tree we display players in increasing 

order. 

Here is an example of a possible outcome : 
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Step 2: Professor Layton < Guybrush Threepwood < You 
 

1. Represent the relation (have seen) between players as a graph, 
argue about your model. 

We chose to use an adjacency matrix, 1 correspond to have seen and 0 have not seen. Here is 

the model : 

 

According to us, this model is a best because it’s very simple to use and we can use a lot of different algorithms 

with graphs, but also because graphs are very easy to understand, even for people who don’t know anything 

about mathematics. 

2. Thanks to a graph theory problem, present how to find a set of 
probable impostors.  
 

We could use the graph coloring in order to solve this problem. However, graph coloring uses 

the adjacency matrix. So in order to have a better and faster complexity, we will directly use 

the adjacency matrix to find a set of probable impostors. 

3. Argue about an algorithm solving your problem. 
 

Step 1 :  With the information about who the players have seen, create the adjacency matrix. 

 

Step 2 : Select the players that have seen the dead player. We can double check by looking at 

the adjacency matrix. 
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Step 3 : For each of these players, look at their column in the adjacency matrix. When you 

come cross a 0 (meaning that the 2 players haven’t seen each other) that doesn’t belong to a 

player that have also seen the dead player, it means that this player is a probable impostor. 

You can add the tuple of the original player and this one to the set of probable impostors. 

 

We chose this method because the complexity is O(N x M) with N the number of players that 

have seen the dead player and M the total number of players alive minus N. 

4. Implement the algorithm and show a solution. 
 

Step 1 :  

 

Step 2 :  

The players that have seen 0 are 1, 4 and 5. 

We can double check and see that in the first column of the adjacency matrix (for player 0), 

there are a 1 on lines 2, 5 and 6 (for players 1, 4 and 5). 

 



DIA1 - LEBLANC César & ADJARIAN Stéphan 

 

Step 3 : 

 

The set of probable impostors is :  

{ 1, 3}, {1, 7}, {1, 8}, {1, 9}, {4, 2}, {4, 6}, {4, 7}, {4, 8}, {5, 2}, {5, 3}, {5, 6}, {5, 9}} 

In our case, the complexity was O(N x M)  with N = 3 and M = 6. 
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Step 3: I don't see him, but I can give proofs he vents! 
 

1. Presents and argue about the two models of the map. 
 

We have two maps : one for crewmates and one for impostors (the same than the previous 

one but with vents). We took the picture of the Among Us map and we decided to take 1cm = 

1sec. Moreover, we decided to say that taking a vent would not be instantaneous but would 

take 1sec (which is still obviously a lot faster than walking). 

Here is the map that crewmates can use : 

 

We can see that for example to go from Upper E. to Reactor a crewmate has to walk 4.77 cm 

+ 3.54cm = 8.31cm. It will the player 8.31sec to go from Upper E. to Reactor. 
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Now let’s see the map for impostors : 

 

 

Now if we take the same example than for crewmates, we can see that to go from Upper E. to 

Reactor, an impostor has 2 choices : he can either pretend to be a crewmate and walk between 

the two rooms (that will take him 8.31sec, same as before) or he can take the vent (that will 

take him only 1sec). 

2. Argue about a pathfinding algorithm to implement. 
 

The goal to compare the time to travel between any pair of rooms, so we will use the Floyd-

Warshall Algorithm because it computes the shortest distances between every pair of vertices 

in the input graph. If we write V the number of Vertices and E the number of Edges, the space 

complexity of this algorithm is O(V2) and time complexity of this algorithm is O(V3). We will 

have to create two graphs : one for the crewmates and their time to travel between each 

room and one for the impostors with the minimal time to travel between each room (so if 

they can walk and use a vent to go from one room to another, we will only include the vent in 

the graph, because otherwise if they decide to walk then we can use the crewmate graph). 

So here is the crewmates’ graph : 
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It is obviously unoriented because if you can walk from room A to room B you can also walk 

from room B to room A. 

For the impostor graph, we decided to do something a little different. Because it was specified 

in the exercise that “we don’t have to be precise”, we decided to put the vent in the Shield 

room (which is the room 13 in our graph). This way, impostors can directly go from Cafeteria 

to Shield instead of walking in the corridor for example. 

So here is the impostors’ graph : 

 

It is also an unoriented graph because impostors can walk and vent in any direction they want. 

Here is how the algorithm of Floyd-Warshall works :  

Step 1 : We create a matrix of dimension 14 by 14 (14 being the number of rooms in the map). 
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Step 2 : We iterate through each cell of the matrix. If the cell is in the diagonal, then we put a 

0 here (because the distance to go from a room to the same room will obviously always be 0). 

If the cell is an edge (meaning that there is a path directly leading from the first room to the 

second), then we put the weight of the edge in this cell. Otherwise, we put 999 (a large 

number). 

 

Step 3 : We iterate from 1 to 14 (the number of rooms). In each iteration, we iterate once 

more from 1 to 14, and again we iterate from 1 to 14 (meaning we have 3 nested loops).  Then 

if the cell representing the distance to go from the room of the second loop to the room of 

the third loop is bigger than the sum of the distance to go from the room of the second loop 

to the room of the first loop and the distance to go from the room of the first loop to the room 

of the third loop, then this first distance becomes the sum. 

3. Implement the method and show the time to travel for any pair 
of rooms for both models. 

 

Here is the result for the crewmates. How can we read that ? We must take the room from 

which we want to start as the number of our line (+1 because it starts as 0) and the room from 

which we want to end as the number of our column (+1 because it starts as 0) and check the 

intersection. So, for example, let’s say a crewmate wants to go from Cafeteria to Electrical. 

We look at the graph from question 2 and we see that Cafeteria is room 5 and Electrical room 

6. So, we look at the intersection from line 6 and column 7 and we find 19.21 which means it’s 

the distance in cm and the time in sec that it will take to a crewmate to go (in the fastest way 

possible) from Cafeteria to Electrical.  
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And here is the result for the impostors. We can see that for an impostor, it’s now faster to go 

from Cafeteria to Electrical, because it now takes only 11.01 (both cm and sec). 

 

We decided to implement a user-friendly method that will allow you to check the shortest 

distance between two rooms in a cleaner way. 

Here is the same example than before for crewmates : 

 

And here is the same example but for impostors : 

 

We can see that we found the same distance/time than when we directly looked into the matrix. 
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Step 4: Secure the last tasks 
 

1. Presents and argue about the model of the map.  
In this section we will use the same adjacency matrix as step 3 for crewmates with the same 

weight between rooms since it contains all travelled times between rooms. 

2. Thanks to a graph theory problem, present how to find a route 
passing through each room only one time.  

This is a well-known problem in graph theory called travelling salesman problem. We need to 

find an hamiltonian path minimizing the travelled distance. An hamiltonian path is a path in 

graph passing through all nodes only once. 

3. Argue about an algorithm solving your problem.  
To solve this problem, we decided to use a recursive backtracking algorithm to find all 

Hamiltonian paths in the graph and then to sort all the paths founded with respect to the 

travelled distance and pick the best one (meaning the one minimizing the distance) ! 

4. Implement the algorithm and show a solution. 
We implement a graph class with some function to create easily the adjacency matrix (add 

edge function). We needed a function to get the neighbors of a node to compute the 

hamiltonian in the recursive function to get Hamilton paths.  

We don’t want to use a brute force algorithm, because it would be very slow (if we note r the 

number of rooms in the map, there are r! different sequences of rooms that could be 

Hamiltonian paths). So, we used a faster approach.  

Here is the algorithm we used to get all the Hamiltonian paths of the graph beginning on one 

node (note that we do this for every node and then we sort them by ascending order to get 

the lowest distance/time first).  

Step 1 : First we start with just one node and an empty path.  

Step 2 : We check if the same node is twice in the path. If yes, we exit the algorithm and no 

such Hamiltonian path exists. 

Step 3 : If the path thus far is valid, we calculate the distance by adding the weight between 

each node (which represents the distance in cm and the time in sec between two rooms in 

our case). 

Step 4 : Now we get all the neighbors of the last node of our current path, and we start again 

our algorithm at step 2 for all of the neighbors (meaning it’s a recursive algorithm, an 

algorithm which calls himself several times). 
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Step 5 : At the end, when we calculated all of the possible Hamiltonian paths starting at one 

room, we start again but starting at another room (we do that for the 14 rooms of the map). 

Step 5 : We sort the Hamiltonian paths in an ascending order according to the distance, and 

the path at the top of our list will be the optimal path because it will be the path that travels 

in every room exactly once with the lowest distance and time. 

When we run the algorithm, it returns 80 lines sorted. Here is the final result (truncated) : 

 

Note that some paths are identical but doesn’t begin on the same vertex (1 and 4 for instance). 

 

Hence, the shortest path to go through each room and finish all the remaining tasks as fast as 

possible is the first one with a distance of 110,289cm or about 110 seconds. 

We can see that the shortest path is : 6 → 2 → 0 → 3 → 1 → 4 → 5 → 11 → 10 → 12 → 13 

→ 8 → 7 → 9 

Which corresponds to : Electrical → Lower E. →Reactor → Security → Upper E. → Medbay → 

Cafeteria → Weapons → O2 → Navigations → Shield → The room without a name between 

Shield and Storage → Storage → The room without a name between Storage and Cafeteria. 

 

 


